Skip to content

Task 1

A=[2111],B=[1102]

  • A+B=[2+1111+01+2]=[3013]

  • AB=[21+102(1)+1211+101(1)+12]=[2011]

  • (A·B)1:

[(AB)1|I]=[20|1011|01]=[10|0.5011|01]=[10|0.5001|0.51] so, (AB)1=[0.500.61]

Task 2

A=[0165],B=[02],C=[10]

{x=Ax+Buy=Cx, so:

{pX(s)=AX(s)+BU(s)Y(s)=CX(s)

and we have:

Y(s)=C(pIA)1BU(s)

W(p)=C(pIA)1B

pIA=[p0010(6)p(5)]

[(pIA)|I]=[p1|106p+5|01]=[11p|1p06p+5|01]=[10|p+5p2+5p+61p2+5p+601|6p2+5p+6pp2+5p+6] so, (pIA)1=[p+5p2+5p+61p2+5p+66p2+5p+6pp2+5p+6]

and W(p)=C(pIA)1B=[10][p+5p2+5p+61p2+5p+66p2+5p+6pp2+5p+6][02]=2p2+5p+6

and the input-output differential equation equals to:

y+5y+6y=2u

Task 3

x1=2x1x12x1x2, x2=3x22x1x2x22

When it comes to the equilibrium point, we have the cases:

{x1=2x1x12x1x2=0x2=3x22x1x2x22=0

so,

{x1=x1(2x1x2)=01x2=x2(32x1x2)=02

for equation 1, there are two possible solutions:

{x1=0x1=2x2

and for equation 2:

{x2=0x2=32x1

so the equilibrium points are:

(0,0),(0,3),(2,0),(1,1)

Task 4

W(p)=W1(p)W2(p)1W3(p)W4(p)

So, we have:

W(p)=p211p+21p=2(p+2)p22